Robust Matrix Completion

Olga Klopp

CREST - Université Paris Ouest

Olga Klopp (CREST - UP10)

3

イロン イヨン イヨン イヨン

Matrix Completion

Problem

Infer missing entries

Olga Klopp (CREST - UP10)

Robust Matrix Completion

▶ ★ 聖 ▶ ★ 更 ▶

Motivation

3

イロト イヨト イヨト イヨト

The Netflix problem

Example from the St Flour's Lectures by Emmanuel Candès

- Netflix database
 - About half a million users
 - About 18,000 movies
- People rate movies
- Sparsely sampled entries

NETFLIX

Watch unlimited movies & TV episodes For one low monthly price.

(日) (周) (三) (三)

The Netflix problem

< ロト < 同ト < ヨト < ヨト

Global positioning from local distances

Example from the St Flour's Lectures by Emmanuel Candès

- Points $\{x_j\}_{1 \le j \le n} \in \mathbb{R}^d$
- Partial information about distances $M_{ij} = \|x_i x_j\|$

Example (Singer, Biswas et al.)

- Low-powered wirelessly networked sensors
- Each sensor can construct a distance estimate from nearest neighbor

・ロン ・聞と ・ ほと ・ ほと

Global positioning from local distances

- Points $\{x_j\}_{1 \le j \le n} \in \mathbb{R}^d$
- Partial information about distances
 M_{ij} = ||x_i x_j||

Example (Singer, Biswas et al.)

- Low-powered wirelessly networked sensors
- Each sensor can construct a distance estimate from nearest neighbor

Problem	
Locate the sensors	

Structure-from-motion problem

Problem

Recover 3D shape from 2D images

Olga Klopp (CREST - UP10)

Robust Matrix Completion

- 4 B M 4 B M

Structure-from-motion problem

- P features over F frames • $(x_{fp}, y_{fp}) =$ position of feature p at frame f
- $2F \times P$ measurement matrix

x_{11}	•••	x_{1P}
	• • •	
x_{F1}		x_{FP}
y_{11}		y_{1P}
	•••	
y_{F1}		y_{FP}

イロト 不得下 イヨト イヨト 二日

Olga Klopp (CREST - UP10)

Structure-from-motion problem

- P features over F frames
- $(x_{fp}, y_{fp}) =$ position of feature p at frame f
- W a $2F \times P$ measurement matrix
- Occlusions $\rightarrow W$ partially filled in

Γ×	?	?	?	\times	?
?	?	×	×	?	?
×	?	X	?	?	?
?	×	?	?	?	×
×	?	?	?	?	?
2	×	?	×	?	?

Problem

Recover the missing measurements

Olga Klopp (CREST - UP10)

10 / 36

Engineering/scientific applications: unknown matrix has often (approx.) low rank

- Netflix matrix
- Sensor-net matrix: $\|x_i x_j\|^2$, $\{x_i\} \in \mathbb{R}^d$
 - ▶ rank 2 if d = 2
 - rank 3 if d = 3
 - ▶ ...
- Structure-from-motion problem: $rank \leq 4$
- Many others (e.g. machine learning, quantum tomography ...)

▲□▶ ▲圖▶ ▲圖▶ ▲圖▶ ▲圖 ● のへ⊙

Dimension reduction

 $M \in \mathbb{R}^{m_1 \times m_2}$ of rank r depends upon $(m_1 + m_2 - r)r$ free parameters

- $r \ll \min(m_1, m_2) \Rightarrow (m_1 + m_2 r)r \ll m_1 m_2$
- Completion impossible if $n < (m_1 + m_2 r)r$

◆□▶ ◆圖▶ ◆圖▶ ◆圖▶ ─ 圖

Trace - norm heuristics

Rank minimization

minimize	$\operatorname{rank}(A)$
subject to	$A_{ij} = M_{ij}$
	$(i,j)\in E$

• (Usually) NP-hard

3

ヘロト 人間 ト くほ ト くほ トー

Trace - norm heuristics

Rank minimization		
minimize	$\operatorname{rank}(A)$	
subject to	$A_{ij} = M_{ij}$	
	$(i,j) \in E$	

• (Usually) NP-hard

Trace-norm min	imization
minimize subject to	$\ A\ _*$ $A_{ij} = M_{ij}$ $(i, i) \in F$
	$(\iota, J) \in E$

- Convex relaxation (Fazel (2002))
- Trace norm:

 $\|A\|_* = \Sigma \ \sigma_i(A).$

• Semidefinite program (SDP)

Trace Regression Model

$$Y_i = \operatorname{tr}(X_i^T M) + \xi_i, \quad i = 1, \dots n$$

- $(X_i, Y_i), i = 1 \dots n$ observations, $X_i \in \mathbb{R}^{m_1 \times m_2}$;
- $M \in \mathbb{R}^{m_1 \times m_2}$ unknown matrix of interest;
- ξ_i i.i.d. random errors: $\mathbb{E} \xi_i = 0$, $\mathbb{E} \xi_i^2 = \sigma^2$.

イロト 不得 トイヨト イヨト 二日

Trace Regression Model

$$Y_i = \operatorname{tr}(X_i^T M) + \xi_i, \quad i = 1, \dots n$$

- $(X_i, Y_i), i = 1 \dots n$ observations, $X_i \in \mathbb{R}^{m_1 \times m_2}$; • $M \in \mathbb{R}^{m_1 \times m_2}$ unknown matrix of interest;
- ξ_i i.i.d. random errors: $\mathbb{E} \xi_i = 0$, $\mathbb{E} \xi_i^2 = \sigma^2$.

Problem

Recover M from (X_i, Y_i) when $m_1 m_2 \gg n$

Olga Klopp (CREST - UP10)

◆□▶ ◆圖▶ ◆圖▶ ◆圖▶ ─ 圖

Matrix Completion

$$X_i = \begin{bmatrix} 0 & 0 & \cdots & 0 \\ 0 & 1 & \cdots & 0 \\ & & \ddots & \\ 0 & 0 & \cdots & 0 \end{bmatrix}$$

The design matrices X_i are **i.i.d** copies of a random matrix X having distribution Π on the set \mathcal{X} .

$$\mathcal{X} = \left\{ e_j(m_1) e_k^T(m_2), 1 \le j \le m_1, 1 \le k \le m_2 \right\}$$

 $e_l(m)$ are the canonical basis vectors in \mathbb{R}^m . If $X_i = e_k(m_1)e_l^T(m_2)$ $\operatorname{tr}(X_i^TM) = M_{kl}$

 M_{kl} is (k, l)th entry of M.

3

イロト 不得 トイヨト イヨト

Matrix Completion: Equivalent formulation

A subset of indexes

$$E \in \{1, \dots, m_1\} \times \{1, \dots, m_2\}, \quad \text{Card}(E) = n.$$

• We observe the noisy entries of M:

$$y_{kl} = M_{kl} + \xi_{kl}, \quad (k,l) \in E$$

 M_{kl} is (k, l)th entry of M

• Difference: an entry appears at most once.

Non-noisy case

- Candès/Recht (2008), Candès/Tao (2009)
- Gross (2009), Recht (2009)
- Different approach Keshavan et al (2009) (OPTSPACE)

Recht (2009)

Exact reconstruction with high probability if

$$n > C \log^2(m) (m_1 + m_2) \operatorname{rank}(M)$$

 $m = \min\{m_1, m_2\}.$

過 ト イヨ ト イヨト

Exact reconstruction: conditions

- Sampling uniformly at random
- "Incoherence" condition:

 $A \in \mathbb{R}^{m_1 \times m_2} = U DV^T$, $\operatorname{rank}(A) = r$, $\nu = O(1)$ and $d = \max(m_1, m_2)$

$$\left\| U^T e_i \right\|^2 \le \frac{\nu r}{d}, \quad \left\| V^T e_i \right\|^2 \le \frac{\nu r}{d}$$

and

$$\left| U \, V^T \right|_{ij}^2 \le \frac{\nu r}{d^2}$$

(intuition: column and row spaces cannot be aligned with basis vectors)

イロト 不得 トイヨト イヨト 二日

Constrained Matrix LASSO

$$\widehat{M} = \operatorname*{argmin}_{\|A\|_{\infty} \leq \gamma} \left\{ \frac{1}{n} \sum_{i=1}^{n} \left(Y_i - \langle X_i, A \rangle \right)^2 + \lambda \|A\|_* \right\}$$

- $\lambda > 0$ is a regularization parameter.
- γ is an upper bound on $\|M\|_{\infty} = \max_{i,j} |M_{ij}|$.

Often known in applications! (e.g. NETFLIX maximal rating)

- $\gamma \rightarrow$ the ball over which we are minimizing.
- Optimal choice

$$\lambda = C^* \sigma \sqrt{\frac{\log(m_1 + m_2)}{\min(m_1, m_2)n}}.$$

・ロト ・回ト ・ヨト ・ヨト

Matrix LASSO: bounds on estimation error

Theorem (K., 2012)

With a good choice of λ , with high probability

$$\frac{\|\widehat{M} - M\|_2^2}{m_1 m_2} \le C \max(\sigma^2, \gamma^2) \log(m_1 + m_2) \frac{\max(m_1, m_2) \operatorname{rank}(M)}{n}.$$

 $n > C \log(m_1 + m_2) \max(m_1, m_2) \operatorname{rank}(M)$

- Low rank matrix M: $\mathbf{n} \ll \mathbf{m_1 m_2}$.
- n close to the number of degrees of freedom of a rank r matrix

$$(m_1 + m_2)r - r^2$$

• Minimax optimality: Koltchinskii et al (2011)

Assumptions on the sampling scheme

We consider a general (unknown) weighted sampling scheme:

- π_{jk} = probability to observe the (j, k)-th entry;
- $C_k = \sum_{j=1}^{m_1} \pi_{jk}$ the probability to observe an element from the k-th column;
- $R_j = \sum_{k=1}^{m_2} \pi_{jk}$ the probability to observe an element from the *j*-th row.

Assumption 1

There exists a positive constant $\mu \leq 1$ such that

$$\pi_{jk} \ge \frac{\mu}{m_1 m_2}$$

Assumptions on the sampling scheme

The nuclear-norm penalization fails when some columns or rows are sampled with very high probability (Salakhudinov et al (2010))

Assumption 2 There exists a positive constant $\nu \ge 1$ such that $\max_{i,j} (C_i, R_j) \le \frac{\nu}{\min(m_1, m_2)}.$

• Uniform sampling: $\nu = \mu = 1$.

・ロト ・四ト ・ヨト ・ヨト

Robust Matrix Completion

joint work with K. Lounici and A. Tsybakov

Olga Klopp (CREST - UP10)

イロト イヨト イヨト

Motivation

Gross errors frequently occur in many applications

- Web data analysis
- Occlusions
- Malicious tampering
- Image processing
- . . .

3

過す イヨト イヨト

Ranking and Collaborative Filtering

Model

• Observations (Y_i, X_i) satisfying the trace regression model

$$Y_i = \operatorname{tr}(X_i^T M_0) + \xi_i, \quad i = 1, \dots N$$

- We observe noisy entries of $M_0 = L_0 + S_0$
 - $L_0 \in \mathbb{R}^{m_1 \times m_2}$ is low rank
 - $S_0 \in \mathbb{R}^{m_1 \times m_2}$ gross/malicious corruptions
- We do not know which entries are corrupt!

▲□▶ ▲□▶ ▲□▶ ▲□▶ = ののの

Model

• Observations (Y_i, X_i) satisfying the trace regression model

$$Y_i = \operatorname{tr}(X_i^T M_0) + \xi_i, \quad i = 1, \dots N$$

- We observe noisy entries of $M_0 = L_0 + S_0$
 - $L_0 \in \mathbb{R}^{m_1 \times m_2}$ is low rank
 - $S_0 \in \mathbb{R}^{m_1 \times m_2}$ gross/malicious corruptions
- We do not know which entries are corrupt!

Goal

Recover (L_0, S_0) from (X_i, Y_i) when $m_1 m_2 \gg N$

イロト 不得下 イヨト イヨト 二日

Matrix Decomposition Problem

We observe ALL entries of $M_0 = L_0 + S_0$

- Chandrasekaran et al (2011) : S_0 is element-wise sparse;
- Hsu et al (2011): milder conditions for recovery;
- Xu et al (2012) : S₀ is column-wise sparse;
- Agarwal et al (2012) : "spikiness condition":

• element-wise sparsity:
$$\|L\|_{\infty} \leq \frac{\alpha}{\sqrt{m_1 m_2}}$$

• column-wise sparsity:
$$\|L\|_{2,1} \leq \frac{\alpha}{\sqrt{m_2}}$$

Robust Matrix Completion: non-noisy case

We observe a small fraction of entries of $M_0 = L_0 + S_0$

- Candès et al (2009):
 - ▶ S₀ is element-wise sparse;
 - random positions of corruptions;
 - ► $N = 0.1m_1m_2$.
- Chen et al (2011):
 - ► S₀ is column-wise sparse;
 - random positions of corruptions;
 - Sparse/low-rank incoherent condition.
- Chen et al (2013) and Li (2013):
 - ▶ S₀ is element-wise sparse;
 - L₀ is incoherent;
 - assumptions on the number of observations.

過 ト イヨ ト イヨト

Convex relaxation for robust matrix completion

$$\begin{split} (X_i, Y_i), \, i &= 1 \dots N \text{ observations} \\ Y_i &= \operatorname{tr}(X_i^T M_0) + \xi_i, \quad \text{and} \quad M_0 = L_0 + S_0 \\ (\widehat{L}, \widehat{S}) &\in \operatorname*{argmin}_{\substack{\|L\|_{\infty} \leq \mathbf{a} \\ \|S\|_{\infty} \leq \mathbf{a}}} \left\{ \frac{1}{N} \sum_{i=1}^N \left(Y_i - \langle X_i, L + S \rangle \right)^2 + \lambda_1 \|L\|_* + \lambda_2 \mathcal{R}(S) \right\} \end{split}$$

• λ_1, λ_2 are regularization parameters.

- a is an upper bound on $||L_0||_{\infty}$ and $||S_0||_{\infty}$.
- $\mathcal{R}(S)$ norm-based penalty \rightarrow corruptions

◆□▶ ◆圖▶ ◆臣▶ ◆臣▶ ○臣

Sparsity structure

• Column-wise sparsity: small number $s < m_2$ of non-zero columns

$$\mathcal{R}(S) = \|S\|_{2,1} = \sum_{k=1}^{m_2} \|S^k\|_2 \qquad \begin{bmatrix} 0 & \times & 0 & \dots & 0 & \times & 0 \\ 0 & \times & 0 & \dots & 0 & \times & 0 \\ 0 & \times & 0 & \dots & 0 & \times & 0 \\ 0 & \times & 0 & \dots & 0 & \times & 0 \\ 0 & \times & 0 & \dots & 0 & \times & 0 \\ 0 & \times & 0 & \dots & 0 & \times & 0 \end{bmatrix}$$

• Element-wise sparsity: small number $s \ll m_1m_2$ of non-zero entries:

$$\mathcal{R}(S) = \|S\|_{1} = \sum_{ij} |S_{ij}| \qquad \begin{bmatrix} 0 & \times & 0 & \dots & 0 & 0 & 0 \\ 0 & 0 & 0 & \dots & 0 & \times & 0 \\ 0 & 0 & 0 & \dots & 0 & 0 & 0 \\ 0 & 0 & 0 & \dots & 0 & 0 & 0 \\ 0 & 0 & 0 & \dots & 0 & 0 & \times \\ 0 & 0 & 0 & 0 & \dots & 0 & 0 & \times \\ 0 & 0 & 0 & 0 & \dots & 0 & 0 & \times \\ 0 & 0 & 0 & 0 & \dots & 0 & 0 & \times \\ 0 & 0 & 0 & 0 & \dots & 0 & 0 & \times \\ 0 & 0 & 0 & 0 & \dots & 0 & 0 & \times \\ 0 & 0 & 0 & 0 & \dots & 0 &$$

Assumptions \mathcal{R}

• \mathcal{R} is *decomposable* with respect to a properly chosen set of indices *I*.

$$\mathcal{R}(A) = \mathcal{R}(A_I) + \mathcal{R}(A_{\bar{I}})$$

 $\blacktriangleright \ (2,1)-{\rm norm}$ is decomposable with respect to any set I such that

$$I = \{1, \ldots, m_1\} \times C$$

where $C \subset \{1, ..., m_2\}$.

▶ *l*₁−norm is decomposable with respect to any subspace of indices *I*.

• \mathcal{R} is *absolute*:

$$\mathcal{R}(A) = \mathcal{R}(|A|).$$

• l_p and $\|\cdot\|_{2,1}$ norms are absolute.

Olga Klopp (CREST - UP10)

・ロト ・四ト ・ヨト ・ヨト ・ヨ

Sampling scheme

Set of observations $= \Omega \cup \tilde{\Omega}$

- Ω and $\tilde{\Omega}$ unknown
- $\Omega \cap \tilde{\Omega} = \emptyset$ and $|\Omega| + |\tilde{\Omega}| = N$
- Ω "non-corrupted" observations \rightarrow noisy entries of L_0
- $\tilde{\Omega}$ "corrupted" observations \rightarrow noisy entries of S_0
- $|\Omega|$ and $|\tilde{\Omega}|$ non-random and unknown
- On Ω usual matrix completion sampling.

No assumptions on $\tilde{\Omega}!$

Bounds on estimation error: column-wise sparsity

$$(\widehat{L},\widehat{S}) \in \operatorname*{argmin}_{\substack{\|L\|_{\infty} \leq \mathbf{a} \\ \|S\|_{\infty} \leq \mathbf{a}}} \left\{ \frac{1}{N} \sum_{i=1}^{N} \left(Y_i - \langle X_i, L+S \rangle \right)^2 + \lambda_1 \|L\|_* + \lambda_2 \|S\|_{2,1} \right\}.$$

Theorem (K., Lounici and Tsybakov 2014)

With high probability

$$\frac{\|L_0 - \widehat{L}\|_2^2}{m_1 m_2} \leq \frac{r M}{N} + \frac{|\tilde{\Omega}|}{N} + \frac{\mathbf{a}^2 s}{m_2} \quad \text{and} \quad \frac{\|\widehat{S}_{\mathcal{I}}\|_2^2}{|\mathcal{I}|} \leq \frac{|\tilde{\Omega}|}{N} + \frac{\mathbf{a}^2 s}{m_2}.$$

• $r = \operatorname{rank} L_0$, $M = \max(m_1, m_2)$,

• $|\tilde{\Omega}|$ number of corrupt observations, s number of corrupt columns and \mathcal{I} the set of the non-corrupt columns.

Bounds on estimation error: element-wise sparsity

$$(\widehat{L},\widehat{S}) \in \underset{\substack{\|L\|_{\infty} \leq \mathbf{a} \\ \|S\|_{\infty} \leq \mathbf{a}}}{\operatorname{argmin}} \left\{ \frac{1}{N} \sum_{i=1}^{N} \left(Y_i - \langle X_i, L+S \rangle \right)^2 + \lambda_1 \|L\|_* + \lambda_2 \|S\|_1 \right\}.$$

Theorem (K.,Lounici and Tsybakov 2014) With high probability $\frac{\|L_0 - \widehat{L}\|_2^2}{m_1 m_2} \leq \frac{r M}{N} + \frac{|\tilde{\Omega}|}{N} + \frac{\mathbf{a}^2 s}{m_1 m_2} \quad \text{and} \quad \frac{\|\widehat{S}_{\mathcal{I}}\|_2^2}{|\mathcal{I}|} \leq \frac{|\tilde{\Omega}|}{N} + \frac{\mathbf{a}^2 s}{m_1 m_2}.$

• $r = \operatorname{rank} L_0$, $M = \max(m_1, m_2)$,

• $|\tilde{\Omega}|$ number of corrupt observations, s number of corrupt entries and \mathcal{I} the set of the non-corrupt entries.

・ロト ・回ト ・ヨト ・ヨト

Bounds on estimation error

- Minimax optimality (up to a logarithmic factor).
- All entries are observed $(N = m_1 m_2) \rightarrow \text{matrix decomposition}$.
- Small number of corruptions \rightarrow recovery of L_0 from a nearly minimal number of observations.
- Does not require strong assumption on the unknown matrix.
- Adaptive \rightarrow does not require knowledge of $\operatorname{rank} L_0$ and sparsity level of S_0 .

イロト 不得下 イヨト イヨト 二日

Thank you!

Olga Klopp (CREST - UP10)

3

イロト イヨト イヨト イヨト