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Matrix Completion

Problem

Infer missing entries
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Motivation
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The Netflix problem

Example from the St Flour's Lectures by Emmanuel Candes

NETELIK

. Watch unlimited movies & TV episodes
@ Netflix database For one low monthly price.

» About half a million users
» About 18,000 movies

@ People rate movies

@ Sparsely sampled entries
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The Netflix problem

@ Netflix database Movies
» About half a million users X X
» About 18,000 movies X X
@ People rate movies Users | * X
: X X
@ Sparsely sampled entries o
. >< X -

Problem

Complete the “Netflix matrix”
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Global positioning from local distances

Example from the St Flour's Lectures by Emmanuel Candes

e Points {z;}1<j<n € RY °* . .

@ Partial information about distances °« o ..
Mij = ||z — x| o ® ©

Example ( Singer, Biswas et al.) P .. *

° . o

@ Low-powered wirelessly networked sensors

@ Each sensor can construct a distance
estimate from nearest neighbor
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Global positioning from local distances

@ Points {wj}lgjgn e R4

@ Partial information about distances

M = ||z — x|

Example (Singer, Biswas et al.)

@ Low-powered wirelessly networked sensors

@ Each sensor can construct a distance
estimate from nearest neighbor

Problem

Locate the sensors
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Structure-from-motion problem

Problem

Recover 3D shape from 2D images

Olga Klopp (CREST - UP10) Robust Matrix Completion 8 /36



Structure-from-motion

@ P features over I’ frames

® (xfp,Yfp) = position of feature p at frame f

problem

@ 2F x P measurement matrix
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Structure-from-motion problem

@ P features over F' frames _ _
x 7 7 7 x 7
. 20092 % ox 7 2
o (z = position of feature p at frame o -
(@fp,Ygp) =P p T
. 7 o 0x 7T 7 7 X
o W a 2F x P measurement matrix
x o7 7 77
. . . . 7 o x 7T x 7 7
@ Occlusions — W partially filled in - -
Problem
Recover the missing measurements J
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Low-dimensional structure

Engineering/scientific applications: unknown matrix has often (approx.)
low rank
o Netflix matrix

o Sensor-net matrix: ||z; — x|, {z;} € R
» rank 2 if d = 2
» rank 3ifd =3

> ...

@ Structure-from-motion problem: rank < 4

e Many others (e.g. machine learning, quantum tomography ...)
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Dimension reduction

V*

M € R™*™2 of rank r depends upon (mq + mo — r)r free parameters J

e 7 < min(my,ma) = (M1 + mg — r)r < myms

e Completion impossible if n < (mq +mg —r)r
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Trace - norm heuristics

Rank minimization

minimize rank(A)
subject to Ay = My;
(4,5) € E

@ (Usually) NP-hard
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Trace - norm heuristics

Rank minimization Trace-norm minimization
minimize rank(A) minimize |All,
subject to Ay = My; subject to Ay = My;
(4,j) € E (i,j) € E
@ (Usually) NP-hard @ Convex relaxation

(Fazel (2002))

@ Trace norm:
[A]l, = X 0i(A).
e Semidefinite program (SDP)
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Trace Regression Model

Vi=tr( X M)+¢&, i=1,...n

e (X;,Y;),i=1...n observations, X; € R"™*m2;
o M € R™>*™2 ynknown matrix of interest;

e & iid. randomerrors: E& =0, E 5? =2
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Trace Regression Model

Vi=tr( X M)+¢&, i=1,...n

e (X;,Y;),i=1...n observations, X; € R"™*m2;
o M € R™>*™2 ynknown matrix of interest;

e & iid. randomerrors: E& =0, E 5? =2

Recover M from (X;,Y;) when mimg > n

Problem }
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Matrix Completion

0 0 - 0
X, = 01 - 0
00 - 0

The design matrices X; are i.i.d copies of a random matrix X having
distribution II on the set &.

X = {ej(mi)ef (m2),1 < j <my,1 <k <my}

e;(m) are the canonical basis vectors in R™.

If X; = ex(mq)e] (m2)
tr(XI M) = My,

My, is (k,1)th entry of M.
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Matrix Completion: Equivalent formulation

@ A subset of indexes
Eec{l,...m}x{l,...mg}, Card(E)=n.
@ We observe the noisy entries of M:
Yk = My + &, (k1) €E

My, is (k,1)th entry of M

o Difference: an entry appears at most once.
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Non-noisy case

e Candeés/Recht (2008), Candes/Tao (2009)
@ Gross (2009), Recht (2009)
e Different approach Keshavan et al (2009) (OPTSPACE)

Recht (2009)
Exact reconstruction with high probability if

n > C'log? (m) (my + ma)rank(M)

m = min{my, ma}.
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Exact reconstruction: conditions

e Sampling uniformly at random
@ “Incoherence” condition:

Ac Rmxmz — iy pyT, rank(A) =r, v =0(1) and
d = max(mq, mg)

2 vr 2
oTel? <2 v
and
‘UVT’” — d2

(intuition: column and row spaces cannot be aligned with basis
vectors)
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Constrained Matrix LASSO

A 1 e
M = argmin{ —> (V; — (X;, A))* + )\||A||*}
Amﬁv{n;

@ A > 0 is a regularization parameter.

@ ~y is an upper bound on || M]|,, = max | M;; |.
/L?-]

Often known in applications! (e.g. NETFLIX maximal rating)

@ v — the ball over which we are minimizing.

@ Optimal choice
log(my + mg)
min(my, mo)n’

A=C%
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Matrix LASSO: bounds on estimation error

Theorem (K., 2012)
With a good choice of \, with high probability

= 5
M <C max(az, 72) log(m1 + ma) max(my, mg) rank(M) ‘
mi1ms n

n > C'log(mi + mg) max(mq, ma)rank(M)

@ Low rank matrix M: n < mims.
@ n close to the number of degrees of freedom of a rank r matrix

(my + ma)r — r?

e Minimax optimality: Koltchinskii et al (2011)
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Assumptions on the sampling scheme

We consider a general (unknown) weighted sampling scheme:
e 7, = probability to observe the (j, k)-th entry;

my
o (= .Elek the probability to observe an element from the k-th
J:
column;

ma
e Rj = ¥ mj; the probability to observe an element from the j-th row.
k=1

Assumption 1

There exists a positive constant p < 1 such that

7Tjk>

mimsa
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Assumptions on the sampling scheme

The nuclear-norm penalization fails when some columns or rows are
sampled with very high probability (Salakhudinov et al (2010))

Assumption 2
There exists a positive constant v > 1 such that

v
ax (C, Rj) < ——.
n%,jx( i By) < min(my, ms)

@ Uniform sampling: v=p=1
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Robust Matrix Completion

Joint work with K. Lounici and A. Tsybakov
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Motivation

Gross errors frequently occur in many applications

@ Web data analysis
@ Occlusions
@ Malicious tampering

@ Image processing
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Ranking and Collaborative Filtering

2 People rate items

~~ Some entries
have been
tampered with

Make approach robust vis-a-vis corruptions

Users

Problem

ltems

):

(:
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Model

e Observations (Y;, X;) satisfying the trace regression model
Y = tr(X] My) + &, i=1,...N
@ We observe noisy entries of My = Lo + Sy

» Lo € R™*™2 js low rank

» Sp € R™M*™2 gross/malicious corruptions

@ We do not know which entries are corrupt!
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Model

e Observations (Y;, X;) satisfying the trace regression model
Y = tr(X] My) + &, i=1,...N
@ We observe noisy entries of My = Lo + Sy

» Lo € R™*™2 js low rank

» Sp € R™M*™2 gross/malicious corruptions

@ We do not know which entries are corrupt!

Goal
Recover (Lo, Sg) from (X;,Y;) when mymg > N J
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Matrix Decomposition Problem

We observe ALL entries of My = Ly + Sp J

e Chandrasekaran et al (2011) : Sy is element-wise sparse;
@ Hsu et al (2011): milder conditions for recovery;
e Xu et al (2012) : Sp is column-wise sparse;

o Agarwal et al (2012) : "spikiness condition":

. : !
> element-wise sparsity: ||L||c <
mimso
> column-wi ity: [|L]l21 < —=
column-wise sparsity: 21 < —
V12
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Robust Matrix Completion: non-noisy case

We observe a small fraction of entries of My = Ly + Sp J

e Candes et al (2009):

> Sy is element-wise sparse;
» random positions of corruptions;
» N = 0.1m1m2.

o Chen et al (2011):
> Sy is column-wise sparse;
» random positions of corruptions;
» Sparse/low-rank incoherent condition.

@ Chen et al (2013) and Li (2013):

» Sy is element-wise sparse;
» Lg is incoherent;
» assumptions on the number of observations.
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Convex relaxation for robust matrix completion

(X;,Y;),i=1...N observations

Y; = tr( X My) + &, and My= Lo+ Sp

1 Lloo <a
ISlloo <a

N
(L, S) Eargmin{ Z —(X;, L+ 5))? +)\1||L]*+)\2R(S)}

@ A1, Ao are regularization parameters.
@ ais an upper bound on || Lol and ||Sol

@ R(S) norm-based penalty — corruptions
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Sparsity structure

@ Column-wise sparsity: small number s < mgy of non-zero columns

R(S) =S

m2
20 = > 152
k=1

oS o oo oo
X X X X X X
oo oo oo
OO O o oo
X X X X X X
o O oo oo

@ Element-wise sparsity: small number s << mjmsy of non-zero entries:

R(S) = [ISIh = IS4l

ij

o O oo oo
O O O O O X
O O X © O O
oo oo oo
O O O O X O
X © © O O O
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Assumptions R

@ R is decomposable with respect to a properly chosen set of indices I.

R(A) = R(A1) + R(4f)

> (2,1)—norm is decomposable with respect to any set I such that
I={1,....m} xC
where C' C {1,...,ma}.
» [1—norm is decomposable with respect to any subspace of indices I.

@ R is absolute:
R(A) = R(|A]).

» I, and || - ||2,1 norms are absolute.
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Sampling scheme

Set of observations = QU J

e O and © unknown

o QNN =0and |Q + Q=N

@ ) "non-corrupted” observations — noisy entries of L
o Q) "corrupted” observations — noisy entries of Sy

e |Q| and |©| non-random and unknown

@ On  usual matrix completion sampling.

No assumptions on (2! J
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Bounds on estimation error: column-wise sparsity

N

N (1

(L,5) € argmin {N > (Vi (X, L+8)% + MLl + AQIISHm} :
oz i=1

[1S]l oo <a

Theorem (K., Lounici and Tsybakov 2014)
With high probability

T2 0 a 0 2
ILo-ZI3 _rM 100 2% USRI, %
mimo N N  mse |Z| N  mse

(S]]

e r =rank Ly, M = max(m,ms),

o | number of corrupt observations, s number of corrupt columns and
T the set of the non-corrupt columns.
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Bounds on estimation error: element-wise sparsity

L]l oo <a
ISl oo <a

N
- (1
(L, S) € argmin {N z; (Vi = (Xi, L+ ) + M| L]« + )\2||S||1} :
Theorem (K.,Lounici and Tsybakov 2014)
With high probability
|Zo— LI _rM Lol ats ISzl3 _ 19 | _as

and — .
mima N N  mime |Z| N +mlmg

(S]]

e r =rank Ly, M = max(m,ms),

@ | number of corrupt observations, s number of corrupt entries and
T the set of the non-corrupt entries.

Olga Klopp (CREST - UP10) Robust Matrix Completion 34 /36



Bounds on estimation error

e Minimax optimality (up to a logarithmic factor).
@ All entries are observed (N = mjmgy) — matrix decomposition.

@ Small number of corruptions — recovery of Ly from a nearly minimal
number of observations.

@ Does not require strong assumption on the unknown matrix.

@ Adaptive — does not require knowledge of rank Ly and sparsity level
of S().
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Thank you!
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