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Matrix Completion

Problem

Infer missing entries
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Motivation
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The Netflix problem

Example from the St Flour’s Lectures by Emmanuel Candès

Netflix database
I About half a million users
I About 18,000 movies

People rate movies

Sparsely sampled entries
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The Netflix problem

Netflix database
I About half a million users
I About 18,000 movies

People rate movies

Sparsely sampled entries

Movies

Users



× ×
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Problem

Complete the “Netflix matrix”
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Global positioning from local distances

Example from the St Flour’s Lectures by Emmanuel Candès

Points {xj}1≤j≤n ∈ Rd

Partial information about distances
Mij = ‖xi − xj‖

Example ( Singer, Biswas et al.)

Low-powered wirelessly networked sensors

Each sensor can construct a distance
estimate from nearest neighbor
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Example (Singer, Biswas et al.)

Low-powered wirelessly networked sensors

Each sensor can construct a distance
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Problem

Locate the sensors
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Structure-from-motion problem

Problem

Recover 3D shape from 2D images
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Structure-from-motion problem

P features over F frames

(xfp, yfp) = position of feature p at frame f

2F × P measurement matrix



x11 · · · x1P

· · ·
xF1 . . . xFP
y11 . . . y1P

· · ·
yF1 . . . yFP
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Structure-from-motion problem

P features over F frames

(xfp, yfp) = position of feature p at frame f

W a 2F × P measurement matrix

Occlusions → W partially filled in



× ? ? ? × ?
? ? × × ? ?
× ? × ? ? ?
? × ? ? ? ×
× ? ? ? ? ?
? × ? × ? ?



Problem

Recover the missing measurements
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Low-dimensional structure

Engineering/scientific applications: unknown matrix has often (approx.)
low rank

Netflix matrix

Sensor-net matrix: ‖xi − xj‖2, {xi} ∈ Rd
I rank 2 if d = 2
I rank 3 if d = 3
I . . .

Structure-from-motion problem: rank ≤ 4

Many others (e.g. machine learning, quantum tomography ...)
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Dimension reduction

M ∈ Rm1×m2 of rank r depends upon (m1 +m2 − r)r free parameters

r � min(m1,m2)⇒ (m1 +m2 − r)r � m1m2

Completion impossible if n < (m1 +m2 − r)r

Olga Klopp (CREST - UP10) Robust Matrix Completion 12 / 36



Trace - norm heuristics

Rank minimization

minimize rank(A)

subject to Aij = Mij

(i, j) ∈ E

(Usually) NP-hard

Trace-norm minimization

minimize ‖A‖∗
subject to Aij = Mij

(i, j) ∈ E

Convex relaxation
(Fazel (2002))

Trace norm:

‖A‖∗ = Σ σi(A).

Semidefinite program (SDP)
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Trace Regression Model

Yi = tr(XT
i M) + ξi, i = 1, . . . n

(Xi, Yi), i = 1 . . . n observations, Xi ∈ Rm1×m2 ;

M ∈ Rm1×m2 unknown matrix of interest;

ξi i.i.d. random errors: E ξi = 0, E ξ2
i = σ2.

Problem

Recover M from (Xi, Yi) when m1m2 � n
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Matrix Completion

Xi =


0 0 · · · 0
0 1 · · · 0

· · ·
0 0 · · · 0


The design matrices Xi are i.i.d copies of a random matrix X having
distribution Π on the set X .

X =
{
ej(m1)eTk (m2), 1 ≤ j ≤ m1, 1 ≤ k ≤ m2

}
el(m) are the canonical basis vectors in Rm.

If Xi = ek(m1)eTl (m2)
tr(XT

i M) = Mkl

Mkl is (k, l)th entry of M .
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Matrix Completion: Equivalent formulation

A subset of indexes

E ∈ {1, . . .m1} × {1, . . .m2}, Card (E) = n.

We observe the noisy entries of M :

ykl = Mkl + ξkl, (k, l) ∈ E

Mkl is (k, l)th entry of M

Difference: an entry appears at most once.
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Non-noisy case

Candès/Recht (2008), Candès/Tao (2009)

Gross (2009), Recht (2009)

Different approach Keshavan et al (2009) (OPTSPACE)

Recht (2009)

Exact reconstruction with high probability if

n > C log2 (m) (m1 +m2)rank(M)

m = min{m1,m2}.
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Exact reconstruction: conditions

Sampling uniformly at random

“Incoherence” condition:

A ∈ Rm1×m2 = U DV T , rank(A) = r, ν = O(1) and
d = max(m1,m2)∥∥UT ei∥∥2 ≤ νr

d
,
∥∥V T ei

∥∥2 ≤ νr

d

and ∣∣U V T
∣∣2
ij
≤ νr

d2

(intuition: column and row spaces cannot be aligned with basis
vectors)
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Constrained Matrix LASSO

M̂ = argmin
‖A‖∞≤γ

{
1

n

n∑
i=1

(Yi − 〈Xi, A〉)2 + λ‖A‖∗

}

λ > 0 is a regularization parameter.

γ is an upper bound on ‖M‖∞ = max
i,j
|Mij |.

Often known in applications! (e.g. NETFLIX maximal rating)

γ → the ball over which we are minimizing.

Optimal choice

λ = C∗σ

√
log(m1 +m2)

min(m1,m2)n
.

Olga Klopp (CREST - UP10) Robust Matrix Completion 19 / 36



Matrix LASSO: bounds on estimation error

Theorem (K., 2012)

With a good choice of λ, with high probability

‖M̂ −M‖22
m1m2

≤ C max(σ2, γ2) log(m1 +m2)
max(m1,m2) rank(M)

n
.

n > C log(m1 +m2) max(m1,m2)rank(M)

Low rank matrix M : n�m1m2.

n close to the number of degrees of freedom of a rank r matrix

(m1 +m2)r − r2

.

Minimax optimality: Koltchinskii et al (2011)

Olga Klopp (CREST - UP10) Robust Matrix Completion 20 / 36



Assumptions on the sampling scheme

We consider a general (unknown) weighted sampling scheme:

πjk = probability to observe the (j, k)-th entry;

Ck =
m1

Σ
j=1

πjk the probability to observe an element from the k-th

column;

Rj =
m2

Σ
k=1

πjk the probability to observe an element from the j-th row.

Assumption 1

There exists a positive constant µ ≤ 1 such that

πjk ≥
µ

m1m2
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Assumptions on the sampling scheme

The nuclear-norm penalization fails when some columns or rows are
sampled with very high probability (Salakhudinov et al (2010))

Assumption 2

There exists a positive constant ν ≥ 1 such that

max
i,j

(Ci, Rj) ≤
ν

min(m1,m2)
.

Uniform sampling: ν = µ = 1.
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Robust Matrix Completion

joint work with K. Lounici and A. Tsybakov
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Motivation

Gross errors frequently occur in many applications

Web data analysis

Occlusions

Malicious tampering

Image processing

. . .
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Ranking and Collaborative Filtering

¨̂ People rate items

_̈ Some entries
have been
tampered with

Items

Users



¨̂ ¨̂
_̈ _̈

¨̂ ¨̂
¨̂ ¨̂

_̈
¨̂ ¨̂



Problem

Make approach robust vis-à-vis corruptions
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Model

Observations (Yi, Xi) satisfying the trace regression model

Yi = tr(XT
i M0) + ξi, i = 1, . . . N

We observe noisy entries of M0 = L0 + S0

I L0 ∈ Rm1×m2 is low rank

I S0 ∈ Rm1×m2 gross/malicious corruptions

We do not know which entries are corrupt!

Goal

Recover (L0, S0) from (Xi, Yi) when m1m2 � N
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Matrix Decomposition Problem

We observe ALL entries of M0 = L0 + S0

Chandrasekaran et al (2011) : S0 is element-wise sparse;

Hsu et al (2011): milder conditions for recovery;

Xu et al (2012) : S0 is column-wise sparse;

Agarwal et al (2012) : ”spikiness condition”:

I element-wise sparsity: ‖L‖∞ ≤
α

√
m1m2

I column-wise sparsity: ‖L‖2,1 ≤
α
√
m2
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Robust Matrix Completion: non-noisy case

We observe a small fraction of entries of M0 = L0 + S0

Candès et al (2009):

I S0 is element-wise sparse;
I random positions of corruptions;
I N = 0.1m1m2.

Chen et al (2011):
I S0 is column-wise sparse;
I random positions of corruptions;
I Sparse/low-rank incoherent condition.

Chen et al (2013) and Li (2013):

I S0 is element-wise sparse;
I L0 is incoherent;
I assumptions on the number of observations.

.
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Convex relaxation for robust matrix completion

(Xi, Yi), i = 1 . . . N observations

Yi = tr(XT
i M0) + ξi, and M0 = L0 + S0

(L̂, Ŝ) ∈ argmin
‖L‖∞≤a

‖S‖∞≤a

{
1

N

N∑
i=1

(Yi − 〈Xi, L+ S〉)2 + λ1‖L‖∗ + λ2R(S)

}

λ1, λ2 are regularization parameters.

a is an upper bound on ‖L0‖∞ and ‖S0‖∞.

R(S) norm-based penalty → corruptions
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Sparsity structure

Column-wise sparsity: small number s < m2 of non-zero columns

R(S) = ‖S‖2,1 =

m2∑
k=1

‖Sk‖2



0 × 0 . . . 0 × 0
0 × 0 . . . 0 × 0
0 × 0 . . . 0 × 0
0 × 0 . . . 0 × 0
0 × 0 . . . 0 × 0
0 × 0 . . . 0 × 0


Element-wise sparsity: small number s << m1m2 of non-zero entries:

R(S) = ‖S‖1 =
∑
ij

|Sij |



0 × 0 . . . 0 0 0
0 0 0 . . . 0 × 0
0 0 0 . . . 0 0 0
0 0 × . . . 0 0 0
0 0 0 . . . 0 0 0
0 0 0 . . . 0 0 ×
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Assumptions R

R is decomposable with respect to a properly chosen set of indices I.

R(A) = R(AI) +R(AĪ)

I (2, 1)−norm is decomposable with respect to any set I such that

I = {1, . . . ,m1} × C

where C ⊂ {1, . . . ,m2}.

I l1−norm is decomposable with respect to any subspace of indices I.

R is absolute:
R(A) = R(|A|).

I lp and ‖ · ‖2,1 norms are absolute.
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Sampling scheme

Set of observations = Ω ∪ Ω̃

Ω and Ω̃ unknown

Ω ∩ Ω̃ = ∅ and |Ω|+ |Ω̃| = N

Ω ”non-corrupted” observations → noisy entries of L0

Ω̃ ”corrupted” observations → noisy entries of S0

|Ω| and |Ω̃| non-random and unknown

On Ω usual matrix completion sampling.

No assumptions on Ω̃!
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Bounds on estimation error: column-wise sparsity

(L̂, Ŝ) ∈ argmin
‖L‖∞≤a

‖S‖∞≤a

{
1

N

N∑
i=1

(Yi − 〈Xi, L+ S〉)2 + λ1‖L‖∗ + λ2‖S‖2,1

}
.

Theorem (K., Lounici and Tsybakov 2014)

With high probability

‖L0 − L̂‖22
m1m2

≤ rM

N
+
|Ω̃|
N

+
a2s

m2
and

‖ŜI‖22
|I|

≤ |Ω̃|
N

+
a2s

m2
.

r = rankL0, M = max(m1,m2),

|Ω̃| number of corrupt observations, s number of corrupt columns and
I the set of the non-corrupt columns.
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Bounds on estimation error: element-wise sparsity

(L̂, Ŝ) ∈ argmin
‖L‖∞≤a

‖S‖∞≤a

{
1

N

N∑
i=1

(Yi − 〈Xi, L+ S〉)2 + λ1‖L‖∗ + λ2‖S‖1

}
.

Theorem (K.,Lounici and Tsybakov 2014)

With high probability

‖L0 − L̂‖22
m1m2

≤ rM

N
+
|Ω̃|
N

+
a2s

m1m2
and

‖ŜI‖22
|I|

≤ |Ω̃|
N

+
a2s

m1m2
.

r = rankL0, M = max(m1,m2),

|Ω̃| number of corrupt observations, s number of corrupt entries and
I the set of the non-corrupt entries.
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Bounds on estimation error

Minimax optimality (up to a logarithmic factor).

All entries are observed (N = m1m2) → matrix decomposition.

Small number of corruptions → recovery of L0 from a nearly minimal
number of observations.

Does not require strong assumption on the unknown matrix.

Adaptive → does not require knowledge of rankL0 and sparsity level
of S0.
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Thank you!
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